

 Navigation

 	
 index

 	
 next |

 	CitoEngine documentation

CitoEngine’s documentation

CitoEngine [http://www.citoengine.org] is an alert management system that helps you manage chaos in a better way.

Contents:

	Overview

	Installing CitoEngine

	Installing Cito Plugin Server

	Getting Started

	Integrating CitoEngine with 3rd party tools

	Release Notes

	Troubleshooting

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Cyrus Dasadia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CitoEngine documentation

Overview

The problem:

Configuring monitoring systems to alert properly is an art.
It’s a fine art of configuring thresholds when your monitoring parameters vary widely or when the monitoring tools lack capability to monitor dynamic workloads.
It also takes discipline in working with monitoring systems during release process or outages.
Not all monitoring systems are configured or maintained properly. In the end you have alerts and lots of it!

What is CitoEngine ?

CitoEngine allows you to manage large volume of alerts and trigger actions.
These actions could notify or act on the alert by executing a script (a plugin).
It is ideal alert management service for teams who have multiple monitoring systems.

What can it do?

	Accept alerts from any monitoring systems such as Nagios, Sensu, Cron-jobs, etc. and aggregate alerts.

	Lookup such alerts (called Incidents) to user-defined Event ID’s and enable any action based on rules that meet a user-defined criteria

	Plugins enable actions on Incidents. Plugins can be any script that run commands or make API calls.

	Dashboards to give you an overview of all incoming alerts or grouped by Teams

	It does not require any agents.

	It plugins can be any executable script, no pesky DSL’s.

What it is not:

CitoEngine is not a monitoring system.

How do I use it?

Now that you know what CitoEngine is, we will walk you through how you can use it.

CitoEngine is built on open source technologies and designed to run on Linux. It’s built on the following components

	Python 2.7+

	Django 1.8+

	MariaDB / MySQL 5.5.x (PostgreSQL support coming soon)

	RabbitMQ and AWS SQS (for queue)

CitoEngine can be run on a standalone server or on a Virtual Machine running Ubuntu 64bit >= 12.04 LTS.

Note

Official Docker images are coming soon.

Architecture

[image: _images/cito-flow-20140607.png]
The entire system is divided in two groups: event_listener, queue, poller and engine fall in the CitoEngine group whereas
plugin_server is a standalone service called CitoPluginServer.

All alerts enter the system via the event_listener api call and are sent over to the queue. A poller reading this
queue fetches these events and begins to parse them. If a given event matches a definition in the system, it is accepted as
an Incident. Each Event has one or more user-defined EventActions. The engine checks the threshold in real-time and
fires the EventAction. Thresholds, at the moment, are limited to a conditional match of X events in Y seconds.
The EventAction is simply telling the plugin_server to execute the user-defined plugin with the user-defined (customizable)
parameters.

CitoEngine Terminology

CitoEngine’s web interface allows you to define Events, Teams, Categories, Users and PluginServers.

Events: An event definition includes a Summary, Description, owning Team, Severity and Category. Only members of the
owning Team can act on Incidents generated upon this Event. No two Teams can share the same Event.

Incidents Any alert coming into the system (with a valid Event Code) is defined as an Incident.

Teams: Each team can have one or more Users and Events associated with them.

Category: This is a generic classifier for events. Example categories could be Network, Disk, CPU, etc. These categories
do not affect the behavior of the EventActions.

Users: One user per installation. User can be part of multiple Teams. User permissions are as under:

	SuperAdmin: Can do just about anything.

	Admin: Can add teams.

	User: Can add events and action incidents.

	NOC: Can comment.

	ReportsUser: Can only view reports.

Plugin Server Definition: Users can add links to the plugin server. Once added, the system will fetch the active plugins.
These plugins can now be accessed by the users in Events -> EventActions.

EventActions: Users can define which plugin to execute based on a given threshold. The user can send any number of
parameters to the remote plugin. CitoEngine comes with a few internal variables which can be use sent as parameters:

	__ELEMENT__ Engine send the element name

	__EVENTID__ Engine send the event ID

	__INCIDENTID__ Engine send the incident ID

	__MESSAGE__ Engine send the message which came in by the alerting system.

Suppression: CitoEngine allows you to suppress an event, an element or a combination of both. By suppressing an
event and/or element, there will not be any eventaction taken against incidents against them.

 Copyright 2014, Cyrus Dasadia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CitoEngine documentation

Installing CitoEngine

The following guide shows installation steps on Ubuntu 12.04 x86_64. Theoretically application dependencies can be fulfilled on any
linux distribution i.e. Redhat, ArchLinux, etc. In future, we will try to include installation steps for other distributions as well.
Python module dependencies are installed using pip [http://www.pip-installer.org/] rather than system installer, this gives us more control towards using modules of specific versions.
The following steps assume that you will be installing in /opt/citoengine directory.

Installation

Install dependencies

Installing MySQL and Python development packages
sudo apt-get install libmysqlclient-dev python-dev python-pip git
sudo pip install virtualenv

Note

If you are going to use ldap authentication, then install the following as well sudo apt-get install libldap2-dev libsasl2-dev libssl-dev

Downloading and installing the code

We recommend you use virtualenv for running citoengine, this will help you manage dependencies better. Download the latest build

cd /tmp
git clone https://github.com/CitoEngine/cito_engine
cd /tmp/cito_engine
python setup.py install
cd /opt/
virtualenv /opt/citoengine
source /opt/citoengine/bin/activate
pip install -r /tmp/cito_engine/requirements.txt

MySQL Installation and Configuration

Install mysql server
sudo apt-get install mysql-server mysql-client

Setup mysql root password
sudo dpkg-reconfigure mysql-server-5.5

Create a new database 'citoengine'
sudo mysqladmin -uroot -p create citoengine
Create a new mysql user
/usr/bin/mysql -uroot -p -e "GRANT ALL PRIVILEGES ON citoengine.* TO 'citoengine_user'@'localhost' IDENTIFIED BY 'MINISTRYOFSILLYWALKS' with GRANT OPTION"

Setting up RabbitMQ (Optional):

If you are planning to use RabbitMQ, the following three lines should get you started.

sudo rabbitmqctl add_user citoengine_user citoengine_pass
sudo rabbitmqctl add_vhost /citoengine_event_listener
sudo rabbitmqctl set_permissions -p /citoengine_event_listener citoengine_user ".*" ".*" ".*"

Edit default settings: Copy the sample /opt/citoengine/conf/citoengine.conf-example to /opt/citoengine/conf/citoengine.conf
and edit it accordingly.

Message Queue Configuration:

Edit the DATABASE configuration settings and change the settings. If you are running CitoEngine on AWS,
use AWS:SQS or if running onpremise, setup RabbitMQ as your message queue. Edit either of these configuration blocks and make sure you select QUEUE_TYPE to be either SQS or RABBITMQ.

Note

Amazon SQS does not support message sequencing i.e. it does not guarantee first in, first out for message delivery. See http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/Welcome.html

Initializing the tables and creating an admin account.

source /opt/citoengine/bin/activate
cd /opt/citoengine/app

Populate the database
python manage.py migrate

Update django secret (for csrf)
If you are using the webapp on multiple nodes behind a load balancer,
make sure th secret_key.py file is same on all nodes.
sudo sh -c '/opt/citoengine/bin/create-django-secret.py > /opt/citoengine/app/settings/secret_key.py'

Create your first CitoEngine superuser!
python manage.py createsuperuser

That’s it, you are done!

Note

You can always validate your installation using the command python manage.py validate

Starting the services

CitoEngine is divided into two components, webapp and poller. You can run these two components using the helper
scripts /opt/citoengine/bin/citoengine-poller.sh and /opt/citoengine/bin/citoengine-webapp.sh. If you are on Ubuntu,
you can configure to run them as upstart services using /opt/citoengine/bin/upstart/configure-upstart.sh.

Start CitoEngine SQS Poller service

/opt/citoengine/bin/citoengine-poller.sh

Start CitoEngine Engine

/opt/citoengine/bin/citoengine-webapp.sh

Open your browser and access http://<hostname or IP>:8000 to login to CitoEngine with the admin account you created earlier.

 Copyright 2014, Cyrus Dasadia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CitoEngine documentation

Installing Cito Plugin Server

The following guide shows installation steps on Ubuntu 12.04 x86_64. Theoretically application dependencies can be fulfilled on any
linux distribution viz. Redhat, ArchLinux, etc. In future, we will try to include installation steps for other distributions as well.
Python module dependencies are installed using pip [http://www.pip-installer.org/] rather than system installer, this gives us more control towards using modules of specific versions.
The following steps assume that you will be installing in /opt/cito_plugin_server directory.

Installation

Install dependencies

Installing MySQL and Python development packages
sudo apt-get install libmysqlclient-dev python-dev python-pip
sudo pip install virtualenv

MySQL Installation and Configuration

Install mysql server
sudo apt-get install mysql-server mysql-client

Setup mysql root password
sudo dpkg-reconfigure mysql-server-5.5
Create a new database 'cito_plugin_server'
sudo mysqladmin -uroot -p create cito_plugin_server
Create a new mysql user
/usr/bin/mysql -uroot -p -e "GRANT ALL PRIVILEGES ON cito_plugin_server.* TO 'cito_user'@'localhost' IDENTIFIED BY 'MINISTRYOFSILLYWALKS' with GRANT OPTION"

Setup python virtualenv

We recommend you use virtualenv for running cito engine, this will help you keep manage the dependencies better. Download the latest build

cd /opt/
git clone https://github.com/CitoEngine/cito_plugin_server /opt/cito_plugin_server

sudo mkdir -p /opt/virtualenvs && sudo chown $USER /opt/virtualenvs/ && cd /opt/virtualenvs
virtualenv --no-site-packages /opt/virtualenvs/citopluginvenv
source /opt/virtualenvs/citopluginvenv/bin/activate
pip install -q --upgrade setuptools
pip install -r /opt/cito_plugin_server/requirements.txt

Edit default settings: /opt/cito_plugin_server/cito_plugin_server/settings/production.py

#Database config
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'.
 'NAME': 'cito_plugin_server', # Or path to database file if using sqlite3.
 'USER': '', # Not used with sqlite3.
 'PASSWORD': '', # Not used with sqlite3.
 'HOST': '', # Set to empty string for localhost. Not used with sqlite3.
 'PORT': '', # Set to empty string for default. Not used with sqlite3.
 'OPTIONS': {
 'init_command': 'SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED'
 }
 }
}

PLUGIN_RUNNER_CONFIG = {
 'timeout': 5
}

PLUGIN_DIR = '/opt/plugins/'

Note

Avoid editting /opt/cito_plugin_server/cito_plugin_server/settings/base.py unless you know what you are doing.

Initializing the tables and creating an admin account.

cd /opt/cito_plugin_server

Populate the database
python manage.py syncdb --noinput --migrate

Update django secret (for csrf)
If you are using the webapp on multiple nodes behind a load balancer,
make sure th secret_key.py file is same on all nodes.
sudo sh -c '/opt/cito_plugin_server/bin/create-django-secret.py > /opt/cito_plugin_server/cito_plugin_server/settings/secret_key.py'

Create your first superuser!
python manage.py createsuperuser

That’s it, you are done!

Note

You can always validate your installation using the command python manage.py validate

Starting the services

You can either run the helper scripts in the /opt/cito_plugin_server/bin directory, or you can run the using manage.py <command>

Start CitoEngine Plugin Server

We would recommended that you execute it with lower privileges. Have a look at bin/cito-webapp.sh
for more information.

/opt/cito_plugin_server/bin/cito-plugin-server.sh

Open your browser and access http://<host>:8000 to login to CitoEngine Plugin Server with the admin account you created earlier.

 Copyright 2014, Cyrus Dasadia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CitoEngine documentation

Getting Started

It is highly recommended that you glance over the Architecture and CitoEngine Terminology docs before
proceeding further.

Assuming you have the CitoEngine and CitoPluginServer setup, lets configure an end-to-end setup where we:

	Setup the Event codes.

	Setup the a Plugin

	Configure EventActions

Setting up Event Codes

With a fresh installation, you should first define some teams and categories before creating events. Head over to
CitoEngine->Settings->Teams and add a few teams there (e.g. Ops, QA, DBA-Ops, etc.). Next, head over to
CitoEngine->Settings->Categories and add a few event categories (e.g. Disk, CPU, Memory, Application, etc.).

Note

It is possible to change the names of teams and categories anytime after their creation.

To define an event, go to CitoEngine->Event Codes->Define New Event Code. Fill in the summary as needed e.g.:

Summary: /var full
Description: Server's /var partition is full, it needs to be cleaned up.
Severity: S3
Team: Ops
Category: Disk
Status: <enabled>

As this is your first event definition, its event code would be 1.
With this bare minimum setup, you are now ready to accept Incidents (alerts) for EventCode: 1. Lets test our newly
created event code:

event_publisher.py -e 1 -H "foo.bar.com" -m "It Works!" --cito-server localhost --cito-port 8080

Note

You can find event_publisher.py in integerations tools [https://github.com/CitoEngine/integration_tools/] repository.

Alternately, you can do a JSON POST to the listener e.g.

// Save this as my.json
{
 "event": {"eventid": 1, "element": "citoengine", "message": "healthcheck message"},
 "timestamp": 1410939898
}

curl -X POST -d @my.json "http://my.citoengine.com:8080/addevent/"

Setting up a Plugin

Login to the plugin server and create an API Key CitoPluginServer->API Keys->Add new key e.g. Ops-Key

Next, we define a Plugin. This can be done at CitoPluginServer->Plugins->Add new Plugin. The Name here is what
gets displayed in CitoEngine, so make sure it is unique and non ambigious. Remember, Plugin path field is relative to
the PLUGIN_DIR in your settings file i.e. if you have /opt/citoplugins/clear_tmp.sh plugin and your settings is PLUGIN_DIR='/opt/citoplugins'
then you just need to give clear_tmp.sh in Plugin path. To summarize, for our example, a plugin definition would look like:

Name: ClearTmp
Description: Clears /var/tomcat/temp folder.
Plugin path: clear_tmp.sh
Status: <enabled>
Accessible by: Cyrus, Ops-Key

Now lets go back to the API section and copy the URL listed under our previously defined API key e.g.
http://192.168.77.77:9000/api/13429401-3e5b-46d4-9762-b40ce689386e

Add this to CitoEngine->Plugins->Add a server, once added click on the Refresh link in the listings page. This would query the plugin
server and fetch all active plugins.

Configuring an Event Action

With the newly created Plugin (ClearTmp) ready to be used, lets go back to our previously created event and add an
action against it. Go to CitoEngine->Events->View Event Codes and click on our example event. In the details page,
click on Add an action to this event, this should show you the event action creation form. Select the plugin ClearTmp,
make sure enabled checkbox is ticked.

We need to configure when to invoke the plugin. This can be done by setting the Threshold count and Threshold timer values.
Threshold count of 2 and Threshold timer of 60 indicates that execute the plugin if this event is called 2 times in 60 secs

If you are using a self signed SSL certificate, you may want to uncheck the SSL Verify box on this page. Hit save and you are done.

Use the curl or event_publisher.py to send a few sample events making sure that your plugin is executed as intended.

 Copyright 2014, Cyrus Dasadia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CitoEngine documentation

Integrating CitoEngine with 3rd party tools

CitoEngine can be easily integrated with existing monitoring systems. All integration scripts mentioned here can be
found at integerations tools [https://github.com/CitoEngine/integration_tools/] repository.

Nagios

QuickStart

	Define an event in CitoEngine UI -> Events -> Define an event

	Add a custom Nagios variable called _CITOEVENTID in the service definition as shown below:

define service {
 service_description Total Processes
 _CITOEVENTID 666
 check_command check_local_procs!250!400!RSZDT
 contact_groups +admins
 use local-service
}

	Add the citoengine user to your notification group, in this example we will add the contact to the group admins:

define contactgroup {
 contactgroup_name admins
 alias Nagios Administrators
 members bofh,citoengine
}

Note

Same logic applies for host definitions.

	Copy citoengine.cfg to your nagios’ directory and include it in nagios.cfg.

	Edit the citoengine.cfg file and replace the server and port to their actual values.

	Copy event_publisher.py script to /usr/local/bin/ and make it executable.

Bulk update of service definitions

If you have a lot of service definitions then the above steps may prove very tedious. To help you around this we an use a helper script called cito_config_parser.py.
This script runs in two modes, one where it parses an existing service definition file and other where it updates the service definition file with the relevant event_id’s
exported from CitoEngine. Here is how you can do it:

	Parse the existing service definition file:

cito_config_parser.py --type nagios -c services.cfg --parse --out my-services.txt

	Copy the output of my-services.txt into CitoEngine -> Tools -> Add events in bulk

	Select your Team, Severity, Category, etc and hit submit.

	The next page shows you a list of forms for each service definition you pasted above. Go through it carefully, modify it and hit submit.

5. Go to CitoEngine UI -> Events, select your Team check the Export CSV checkbox and hit search. The UI will give a CSV file of all your team’s events.
Save this locally and have a quick look at it to confirm everything is in order.

	Generate the new services config using the following command:

cito_config_parser.py --type nagios -c services.cfg --events-file events.csv --generate --out new_services.cfg

Note

Do not run the --generate command on a previously configured services.cfg which already has _CITOEVENTID added. Always use the original service definition file.

Note

Sensu support will be released shortly.

LDAP Authentication

To enable LDAP authentication, simply uncomment the lines in file app/settings/ldap_auth.py. This file contains the sample LDAP bindings for
Active Directory. You can modify the bindings based on your LDAP settings.

JIRA Integration

With release of version 1.1.0, we can now create JIRA tickets from the incident view page.

Edit the citoengine.conf and set
JIRA_ENABLED to True

Set the JIRA_USER, JIRA_PASSWORD and the JIRA_FQDN (FQDN should not end with a trailing slash /).

JIRA_PROJECTS, JIRA_ISSUE_TYPES and JIRA_COMPONENTS can be single valued or comma separated list of values.

JIRA_VERIFY_SSL to False if you are using a self-signed certificate or getting any certificate validation errors.

Note

JIRA values are case-sensitive, so make sure you double check the names before adding them.

 Copyright 2014, Cyrus Dasadia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CitoEngine documentation

Release Notes

1.3.1

Release date 01 Nov 2016

Bug Fix

	#66 - Do not allow incidents for disabled events

1.3.0

Release date 25 Mar 2016

New Features

	Modify JIRA ticket for existing incident

	Bulk toggle of incidents

	Bulk JIRA assignment of incidents

	minor bugfixes

1.1.0

Release date 2 Sep 2015

New Features

	JIRA support

	Reports based on time range

	Sorting of incidents based on time and count

	migrates to Travis’ container build system

1.0.0

Release date 21 Jun 2015

New Features

	event suppression

	better application layout and installation script

	integration of listener within the engine

	use gevent for asynchronous processing of incidents

	supports Django 1.8 (with new migrations)

Bugfixes

many..

0.11.0

New Features

	get detailed list of incidents from most alerted elements

	search incidents based on elements

	view username for acknowledged and closed incidents

Bugfixes

	retry rabbitmq connection without crashing

	better handling of messages (including retries) if DB connection drops

	cleaner connection handler for rabbitmq_read

	close connection after writing a message

	increase default log rotation on 100MB

	changes EventSearchForm to show updated team listings

	removes obsolete dispatcher module

	removes boolean comparison for NoneType in get_report_all_incidents

0.10.0

	LDAP authentication support.

	Auto-refreshing dashboards.

	Search elements/hosts.

	Generate report for most alerted elements/hosts.

	Pagination for event code display.

	Show plugin server’s name along with plugin names.

	Lots of bug-fixes.

0.9.3

	Fixes bug where team list was not getting updated when adding users.

	Adds more validation to JSON strings accepted while adding incidents.

0.9.2

	Fixes a critical template bug that didn’t allow adding plugin servers on fresh installation.

	Couple of minor bug fixes.

0.9.1

	Updated the helper scripts in bin directory.

0.9.0

	Added RabbitMQ support.

	Added bulk event creation feature (Tools -> Add events in bulk).

	Added ability to export events in CSV.

	UI will not allow creating events with duplicate summaries in the same category within user’s team.

	Updated Django==1.6.5, Twisted==13.2.0, zope.interface==4.1.0

	Launched the integration_tools [https://github.com/CitoEngine/integration_tools] repository to help integrate with 3rd party tools.

	Lots of unittests, minor bug fixes, removal of cruft, etc.

0.8.0

	Initial release

 Copyright 2014, Cyrus Dasadia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	CitoEngine documentation

Troubleshooting

Known issues

OperationalError ‘MySQL server has gone away’ in django1.6 when wait_timeout passed

By default MySQL’s wait_timeout is set at 28800 seconds (8 hrs). Although this is usually enough for most websites,
this may result in an operational error [https://code.djangoproject.com/ticket/21597#comment:29] in poller for low traffic sites. In such cases, it would be better if you increase
the database wait_timeout to a higher number.

 Copyright 2014, Cyrus Dasadia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	CitoEngine documentation

Index

 Copyright 2014, Cyrus Dasadia.
 Created using Sphinx 1.3.5.

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

search.html

 Navigation

 		
 index

 		CitoEngine documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Cyrus Dasadia.
 Created using Sphinx 1.3.5.

_static/minus.png

_images/cito-flow-20140607.png
x.foo.com is down
daily_sales < $10
website_login_failures > 100
tomcat gc_pause > 1 sec

namnode01.baz.com 100% CPU|

Event
Listener

Queue

Poller

Engine

Cito
Plugin
Server

PagerDuty

script

email

aws-cli

CitoEngine

JIRA

_static/up-pressed.png

_static/comment-bright.png

